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Projected:
T1/20νββ  > 9.5 x 1025 yr (90% C.L.)
mββ < 50 – 130 meV

T1/20νββ > 4.0 × 1024 y (90% C.L.)

Astropart. Phys. 34, 
822–831 (2011)

Phys. Rev. Lett. 115, 
102502 (2015)

Adv. High Energy Phys. 2015, 
879871 (2015) 

+

2



Jeremy Cushman, YaleDNP Meeting, 10/16/16

Bolometer calibration
• Bolometers are operated at ~10 mK

• Temperature rises ~0.1 mK per MeV of energy deposited

• Temperature is measured with temperature-dependent resistors (thermistors)

• Bolometers require independent in situ energy calibration

• For CUORE, we will use:

• 232Th γ-ray sources approximately every month

• Constant-energy pulser to measure detector stability and correct for variations in 
detector gain
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Calibration source deployment
• Sources are outside cryostat during physics 

data-taking
• Outer bolometers shield inner bolometers
• Sources must be lowered into cryostat for 

calibration and cooled to 10 mK
• Sources are put on strings and are lowered 

under their own weight
• A series of tubes in the cryostat guide the 

strings
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Cooling the sources
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• We remove heat from sources with:
• A pair of copper blocks (the "thermalizer") that 

mechanically squeezes on the sources at 4 K
• Contact between the sources and their guide tubes, 

which are thermalized to different cryostat stages
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Detector region
• All detectors are now installed in cryostat

• 6 inner guide tubes are installed alongside the detector towers in the cryostat
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Outer calibration sources

Source
capsule

Guide
tubes

6 outer guide tubes run along the outside of the copper 50-mK shield
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Control system
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Calibration source deployment is automatic and can be monitored remotely
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Commissioning
• We have operated the full calibration system at base temperature (<10 mK)

• Deployment takes ~6 hours per string (24 hours for all strings in parallel)

• In commissioning, we have been able to stay below target temperature of 10 mK

• Withdrawing the strings takes a similar amount of time, due to frictional heating
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Simulated calibration spectrum
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Simulated 232Th CUORE calibration spectrum

• Many γ lines are available from the 232Th chain for calibration with CUORE
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• We are planning a single 56Co calibration to study response to higher-
energy γ-rays and a variety of double-escape lines

• Lines span a range of 
energies from 239 keV to 
2615 keV

• Single-escape and 
double-escape lines are 
visible at 2104 keV and 
1593 keV
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Calibration in CUORE-0
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• In CUORE-0, the single-γ energy scale uncertainty was 0.1 keV

(1) e+e–

(2) 214Bi
(3) 40K
(4) 208Tl
(5) 60Co
(6) 228Ac

• Calibration performance can be tested by measuring residuals (i.e., 
reconstructed energy – true energy) in the physics data

Phys. Rev. Lett. 115, 102502 (2015)

Full CUORE-0 spectrum
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Conclusions

• CUORE will calibrated with 232Th sources contained inside copper 
capsules on Kevlar strings

• Constant-energy pulsers will measure gain and stability between 
calibrations

• We have operated the full calibration system in cryostat 
commissioning runs at base temperature

• Calibration system is ready for CUORE detector commissioning
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J. S. Cushman et al, "The Detector Calibration System for the CUORE cryogenic 
bolometer array", arxiv:1608.01607 [physics.ins-det]
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CUORE
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Also at DNP:
DD.00003  V. Singh: Search for Neutrinoless Double Beta Decay with CUORE
EA.00066  N. Deporzio: Scintillating Bolometer Monte Carlo for Rare Particle Event Searches
EA.00080  S. Dutta: Slow Monitoring Systems for CUORE
EA.00081  B. Daniel: Simulations toward Effective Calibrations of the CUORE Detector
FD.00003  C. Davis: CUORE-0 Measurement of 2νββ decay
FD.00004  K. E. Lim: Search for WIMP-Induced Annual Modulation with the CUORE-0 Experiment
HH.00004  R. Hennings-Yeomans: CUPID: CUORE Upgrade with Particle IDentification
NF.00005  B. Schmidt: Optimizing the CUORE data processing in search for 0νββ decay
NF.00006  B. Welliver: Online Data Quality and Bad Interval Detection for CUORE
NF.00009  E. Hanson: Characterization of single layer anti-reflective coatings for Ge and Si substrates
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Rate uniformity
• Monte Carlo simulations show that the average 

event rate per each column of crystals is 
between 38 and 49 mHz (after pileup cuts)

• We expect a rate uniformity of within ~25% 
between the different columns of crystals
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Figure 6: The simulated event rates per bolometer due to the inner
strings alone (red), the outer strings alone (blue), and all strings
(green), averaged over each column of 13 crystals. The total e↵ective
event rate is less than the sum of those from the inner strings and
the outer strings as a result of pile-up rejection. (Color online.)

Figure 7: Top: A simulated CUORE calibration spectrum, summed
over all channels. The spectra produced by the inner strings and
outer strings are separated and overlaid, and the energies of impor-
tant lines for calibration are labeled in units of keV. Bottom: The
ratio of the counts due to the inner strings divided by the counts
due to the outer strings. The outer strings have a lower peak-height-
to-background ratio, particularly at lower energies, because of the
presence of the copper vessels between the sources and the detectors.
The ratio above 2615 keV is not shown because of low statistics.

Figure 8: Rendering of a single motion box, which controls three
strings. Four motion boxes are mounted above the 300-K plate of
the cryostat.
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Load cell profile
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Calibration challenges

17

• Coincident gammas and single and double escape peaks can be 
reconstructed with different energies
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CUORE-0 physics data residuals
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There is only one contributing tree-level diagram:

We write down the amplitude using the Feynman rules of QED and following

fermion lines backwards. Order of lines themselves is unimportant.
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Exercise 14 Draw Feynman diagram(s) and write down the amplitude for Comp-

ton scattering �e�!
�e�.

6.1 Summing over polarizations

If we knew momenta and polarizations of all external particles, we could calculate

M explicitly. However, experiments are often done with unpolarized particles so

we have to sum over the polarizations (spins) of the final particles and average

over the polarizations (spins) of the initial ones:

|M| 2! |M| 2
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1

2

1

2

X
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| {z }
avg. over initial pol.

sum over final pol.
z}|{X

�3
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(57)

Factors
1/

2 are due to the fact that each initial fermion has two polarization

(spin) states.
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Exercise 14 Draw Feynman diagram(s) and write down the amplitude for Comp-

ton scattering �e�!
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If we knew momenta and polarizations of all external particles, we could calculate

M explicitly. However, experiments are often done with unpolarized particles so
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(spin) states.
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Double escape event:

• Peak at 2505 keV is the result of coincident 1173 and 1332 keV γ-rays 
from 60Co, and it is reconstructed 1.9 ± 0.7 keV too high

• Double escape events most resemble neutrinoless double beta decay 
(0νββ) events, so understanding their energy reconstruction is crucial

60Co
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Measurements with 56Co and 60Co
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• Dedicated calibrations were performed with 60Co and 56Co sources in 
CUORE-0, and a similar effects were observed

• Higher-statistics 56Co calibration in CUORE is planned
• 56Co offers higher energy γ-rays with many single and double escape 

peaks
• Residuals cannot currently be reproduced in Monte Carlo, but their 

physical cause is under investigation
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